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ON COMPUTING THE LATTICE RULE CRITERION R 

STEPHEN JOE AND IAN H. SLOAN 

ABSTRACT. Lattice rules are integration rules for approximating integrals of pe- 
riodic functions over the s-dimensional unit cube. One criterion for measuring 
the 'goodness' of lattice rules is the quantity R. This quantity is defined as a 
sum which contains about Ns- I terms, where N is the number of quadrature 
points. Although various bounds involving R are known, a procedure for cal- 
culating R itself does not appear to have been given previously. Here we show 
how an asymptotic series can be used to obtain an accurate approximation to 
R. Whereas an efficient direct calculation of R requires 0(Nnj) operations, 
where nj is the largest 'invariant' of the rule, the use of this asymptotic ex- 
pansion allows the operation count to be reduced to O(N) . A complete error 
analysis for the asymptotic expansion is given. The results of some calculations 
of R are also given. 

1. INTRODUCTION 

Lattice rules were developed in [15, 16, and 17] for the numerical evaluation 
of integrals of the form 

If f(x) dx, 

where 
Us = {x E IRs: 0< xk < 1, 1 < k < s} 

is the half-open unit cube in s dimensions, and f is assumed to be 1-periodic 
in each of its s variables. Lattice rules are equal-weight rules of the form 

N-1 

( 1.1 ) ~~~Qf =NAd E (xj) ' 
j=0 

in which the abscissa set {xo, ..., N I} consists of all the points in Us that 
also belong to a given 'integration lattice'. A lattice is a discrete set of points 
in IRs such that the sum and difference of every point in the set also belongs to 
the set; the lattice is an integration lattice if it contains the integer lattice Zs as 
a sublattice. A lattice rule with N distinct abscissae is said to be of order N. 
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The representation of lattice rules has been discussed extensively in [18]. 
There, we find the result that every lattice rule may be written as an expression 
of the form 

n - 1 n1-1 Pj 

(1.2) QfkZ ff (1 ZM) I 
1m=0 JpO= 

where nk+1 divides nk for k= 1, ..., m- l, nm > 2, and N= nln2 nm 
is the order of the rule. The number m, which satisfies 1 < m < s, is known 
as the 'rank' of the rule and nI, ... , nm are the 'invariants'. (The abscissae 
as they appear in (1.2) may not lie in Us, but equivalent abscissae that do lie 
in Us may be obtained by subtraction of appropriate integer vectors: for the 
assumed periodicity of f ensures that this subtraction leaves the lattice rule 
unchanged.) 

Lattice rules generalize the well-studied method of good lattice points due to 
Korobov [10] and Hlawka [6], in which the rule is of the rank-I form 

(1.3) Qf= N E f (N) 

Here, z is a integer vector of length s having no nontrivial factor common 
with N. 

The error in the lattice rule Q is easily stated. 

Theorem 1 [17]. Suppose Q is the lattice rule (1.1) and f has the absolutely 
convergent Fourier series representation 

f(X) = E a(h)el2h-x. 
hEZS 

Then 

(1.4) Qf-If= E a(h). 
hEL' 

In the theorem, h * x is the usual inner product in s dimensions, the prime 
on the sum indicates that the h = 0 term is omitted, and L' is the 'dual lattice' 
defined by 

Lo := {h c 2s: h xk E 2, 0 < k < N- 1}; 
it is the dual of the lattice L(Q) which corresponds to Q. 

There are several criteria available for measuring the 'goodness' of a lattice 
rule, all coming from the number-theoretic literature associated with the method 
of good lattice points. One such criterion is given by P, , where for fixed a > 1, 

L' 1 
Pa= Pa (Q) : = E, (h- h2 

with 
h = max(l, hl). 

This criterion has been used extensively (for instance, see [1, 2, 3, 5, 8, 9, 12, 
14, 17, and 19]). It is evident from (1.4) that P. is just Qfa - Ifa = Qf, - 1, 
where 

fa(x) = O eI2 hsx 
hE7Zs (hih2 ... 
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Another criterion that has been used is the quantity R (see [13 and 14]), 
which for a lattice rule of order N is given by 

(1.5) R =R(Q) := Z hh h 
hEL'I nE(N) 1h2 ... s 

where 
E(N) ={h c 25: -N/2 < hk < N/2, < k < s}. 

However, a procedure for calculating this quantity does not appear to have been 
given previously. Now, because L has N points per unit volume, the average 
density of points in L' is 1/N (see [17]) and E(N) has volume Ns . Thus, 
the sum in (1.5) contains about Ns-' terms. It follows that it would not in 
general be practical to use (1.5) directly to calculate R. In ?2 and ?3 we give 
an alternative method that enables R to be calculated efficiently for any lattice 
rule. 

Our approach makes use of the fact that, from (1.4), 

R(Q) = QfN-IfN = QfN- 1, 

where 
127h-x S 

fN(x)= N h h h = FJFN(Xk), 

with 
e12thx e12thx 

FN(X)= Z h =+h 
-N/2<h<N/2 hEE*(N) 

and E*(N) {h c 2: -N/2 < h < N/2, h :$ O}. (This approach was 
followed previously by Korobov [1 1, Chapter 3] in the method of good lattice 
points, as a way of obtaining bounds on R(Q).) 

Since FN has N terms and the lattice rule also has N terms, we see that 
a direct calculation of R by the above formulae, in which for each point x = 
(xl, ... , x5) of the lattice rule one calculates FN(xl), ... , FN(xs) and then 
their product, would (for fixed s) require O(N2) operations. Actually, this 
number can be reduced by calculating in advance all of the values of FN which 
are required. For the rule with invariants n1, ... , nm (see (1.2)), it is easy to 
see that it is sufficient to calculate only the values FN(j/n I), j = 0, . .. , n - 1, 
where nI is the largest invariant. Organized this way, the calculation requires 
only O(NnI) operations. The most favorable case is the product-rectangle rule 
in which m = s and nI = = -s = NisI, for which the calculation via 
the above formulae needs only 0(N1+1/S) operations. On the other hand, the 
rank-i rule (1.3) with ni = N and N prime requires O(N2) operations for 
the calculation of R by the above formulae. 

In ?2 we shall obtain an asymptotic series which can be used to approximate 
FN. An error analysis of this asymptotic series is given in ?3. We shall see that 
the function FN(x) can be accurately approximated for x sufficiently far away 
from 0, allowing R to be calculated in O(N) operations. 

From [14], Pa and R satisfy 

(1.6) Pa < (1 + 2C(a)N-a)s - 1 + (1 + 2C(a))sR. 
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Thus, it is possible to calculate bounds on Pa by first calculating R, and then 
using (1.6). In ?4, such bounds on P2 are obtained for some s = 7 rank-l 
rules. The results given there indicate that the bounds on Pa obtained by using 
(1.6) are very poor. Much better bounds on Pa for rank-l lattice rules may be 
found in [1] and [2], while [3] and [8] contain bounds on Pa for certain lattice 
rules of higher rank. 

Besides calculating R explicitly, one may also be interested in theoretical 
bounds on R. Bounds on R for rank- I lattice rules may be found in [ 13], while 
bounds for rank-2 lattice rules (but without explicit values for the constants) 
are to be found in [14]. More recently, Joe [7] has obtained bounds on R for 
certain lattice rules with rank ranging from 1 to s inclusive. 

The results of some numerical calculations are presented in ?4. 

2. AN ASYMPTOTIC SERIES FOR FN 

As we saw in the last section, for a lattice rule Q with N quadrature points, 
R is just the quadrature error R(Q) = QfN - 1, where 

S 

(2.1) fN(X) = fJFN(xk), 
k=1 

and 
e127rhx 

FN(X) = z + E |h ' O<x< 1, 
hEE* (N) 

which can be written as 

N-i 

I1 + 22 COS(27hx) N odd, 
(2.2) FN(X) ==1 

2CS(27ihx) eltrNx 
l h 2 E N2h + N12 

N even. 

We want to be able to evaluate FN efficiently. With the notation 

S(x, C) = Ef cos(27rhx) 

h=1 

we have 
1+ 2S(x, Ij(N)), N odd, 

(2.3) FN (X) elrNx 
( + 2S(x, Ij(N)) + N/2 v N even, 

where 

+ 2 
1 N odd, 

(2.4) ?1(N)= N2 
N even. 

Thus, FN can be accurately approximated if we can approximate S(x, C) ac- 
curately. Shortly, we shall see that S(x, I) can be adequately approximated by 
an asymptotic series, provided I is large enough and x is not too close to 0. 
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Since S(x, a) = S(1 - x, a), we may assume that 0 < x < 2 On writing 

H(x, a) = E0 cos(27ihx) 

we have, for 0 < x < 1 -2' 

(2.5) S(x, a) = >cos(27rhx) -H(x, 1) = -log(2 sin(7rx)) - H(x, ij), 
h=1 

where the last step follows from [4, p. 38]. Thus, we can obtain S(x, a) from 
H(x, a). (Korobov [11, Chapter 3] also used this identity.) We emphasize that 
(2.5) is not valid for x = 0, so in this case we should evaluate FN directly by 
using (2.2). 

Writing 

1 j?? e- htdt, 
h 0 

we have 

oo 00 00 oo 

H(x, a) = J e t dt cos(27ihx) = j a e' cos(27rhx) dt 

- (i; Z eh(t+127rx) dt) = 
0 

(j e-?(t+127rx) dt) 
- ~~ / -1) dd R 

I-e(+2r)d 

= e-127r(;7- I)X j 2c dt) 
e2X- e-t 

Substitution of w = et into this last integral yields 

(2.6) H(x, a) = (e-l27r(t- l)xG(x, i)), 

where 

(2.7) G(x, r1)= j 127,- dw. 

Once G(x, a) is known, we may obtain the required function H(x, a) from 
(2.6). 

We now derive an asymptotic expansion which can be used to approximate 
G(x, a) for 0 < x <1 , provided I is large enough. 

Theorem 2. Suppose G(x, I) is given by (2.7). Then for 0 < x < 

0o I + 1 * * *( X)kk! 
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Proof. We have 

1 1 el2x_1 e1 127x 

_ 1 1 x_1 1 E (wX 1 )k 
1 X w-1 el27t l Z (el2tx _ l)k 

1el2UX_ 1 
0 (w 1 )k 

E (el2x - 1)k+X 1 

with the penultimate step holding if Iw - I < -e _iir . Then from (2.7) we 
obtain, by a formal term-by-term integration, 

) E (eW2x 1)k+l dw E (ei2nx - I)k+l 

0 
(-1)kB(q, k + 1) _ (-1)k]F(q)F(k + 1) 

- Z (el27x - 1)k+l Z(el27x - l)k+1]F(q + k + 1) 
k=O k=O 
00 1)kk! 

k-o 1(1 + 1)***(1+ k)(el2xl)~ 
Thus far, the argument is purely formal. It remains to be shown that the 

series provides a valid asymptotic expansion of G(x, j). For convenience, let 
us write the above series as 

00 

Zak(x, X), 
k=O 

where 

(2.8) ak (X ~ ~ (1)k k! k>o (2.8) ak(x,?1)= ijj?1)..((j + 
k)(ei2nx - 1)k+l k 

Also, let GT(X, ij) be the approximation to G(x, j) obtained by truncating 
the series to T + 1 terms, that is 

(2.9) GT(X, ~T (1 )kk! T 
(2.9) GT(XV l E K/(il+ 1) ..(IZ + k)(ei2nx_ - )k+l =: ak(X. / 

k=O k=O 

Later we shall show (see Theorem 3) that 

(2.10) IG(x, i)-GT(X , q)I < 2IaT+1(X 1) I 

That is, the error arising from truncating the series to T + 1 terms is within a 
constant factor of the first omitted term, which can in turn be made arbitrarily 
small, for fixed x and T, by taking I large enough. The series is therefore a 
valid asymptotic expansion of G(x, j) with respect to ij, and the theorem is 
proved, subject to the need to prove (2.10). 0 

The asymptotic expansion for G(x, j) given by Theorem 2 has complex 
terms. Since the desired function H(x, j) is real, we would expect to be able 
to obtain it without using complex arithmetic. On using (2.6) and 

(2.11) ei27x - 1 = 2leI7x sin(7zx), 
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it can easily be shown that 
00 I l)kk! 

(2.12) H0,?1 11(n + 1) ..(I1 + k)(21 sin(7rx)1)k+1 k=O 

* cos(27(q - l)x + (k + l)0x), 

where Ox = arg(2lel7x sin(7rx)) = iT (x + 4). Thus we have an asymptotic 
expansion for H(x, C) which involves only real terms. Upon substituting x = 
ir (x + 4 ), we see that the asymptotic expansion in (2.12) can be written as 

00 

Z bk(X, 7) cos(2[(27 + k - 1)x + (k + 1)/2]), 
k=O 

where bo(x, q) = I/ (2j1 sin(rx) 1) and 

bk+1 (X, 1) =(_1k+(k ? 1)! 
(2.13) bk+l(x, C) = q(Q + 1).. (q + k + 1)(21 sin(7rx)I)k+2 

(2.13) _ 

~~~~-(k +l1) b 

(7+k+ 1)21sin(rxlbk(XS 7). 

Thus, the bk(x, n) may be obtained recursively. 
In practice, one must truncate the asymptotic expansion. With GT(X, ?/) de- 

fined by (2.9), let HT(X, C) be the corresponding truncation of (2.12), namely 

HT(X, ) = R(e-12(-)xGT(X '1)) 

(2.14) T 
1 Z bk(x, 71) cos(7r[(2 ? + k - l)x + (k + 1)/2]). 

k=O 

Then we see from (2.3) and (2.5) that an approximation to FN is given by 
FN, T, where 

1 - 2 log(21 sin(7rx)j) - 2HT(x, ij(N)), N odd, 
(2.1 5) FN, T(X) = 12og2snxj)-HTx7(N)+eltrNx 

I N-/21g(21sin(7rx) )-2HT(x, 11(N))+N12 N even. 

3. ERROR ANALYSIS AND CALCULATION OF R 

Before we can make effective use of the approximation to FN given in (2.15), 
we need an error expression, so that we can make an appropriate choice of the 
truncation parameter T. This is the purpose of this section. 

We see from (2.3), (2.5) and (2.15) that for 0 < x < ? we have 

IFN(X) - FN, T(X)I = 21H(x, 7(N)) - HT(X, 77(N))j. 

Moreover, it follows from (2.6) and (2.14) that 

IH(x, 77)-HT(X, 7)l < IG(x, 77)-GT(X, )1. 
Thus, we obtain 

(3.1) IFN(X) - FNT(X)I < 2jG(x, 7(N)) - GT(X, 77(N))I, 

and so an error bound for IFN - FN, TI may be obtained from an error bound for 
the truncated asymptotic expansion of G(x, C) . The required result is given in 
the following theorem. 
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Theorem 3. Suppose G(x, ,j) and GT(X, ?1) are given by (2.7) and (2.9), re- 
spectively. Then 

IG(x, j) - GT(X, i)I < 2IaT+1(X, '1)1. 
Proof. As in the proof of Theorem 2, we write 

1 1 1 

-~~~ ~ el221xX1 
w 1 

I 
- 

I I~~~~- 

Since 
T k tT+1 

1-t E tk+ 

k=O 

we see from (2.7) that 

IT 
Wq1-I(W_ - )k Il WJ-I(W_ -)T+I 

G~x,) _= dw + j _ _ dw. G(X,11) J (et27rx - l)k+I w+J e~n T2( Wx 

The derivation in Theorem 2 shows that the first integral in the above expression 
is just GT(X, ?1), and hence 

IG(x , 7) - GT(X, 17)1= wn-(W- I)T dw 
o (el27x - 1)T+2 ( -W 

1 wr (1- W)T+1 dw sup 
ioe27rx 1T+2 O~? -W- 

O<<l e12tx 1 

- sup laT+1(X, 7)t. 

O<x? I 1-w- 
O<w<21 -e2x - 1 

Now 

1 -e 1| 2 + 1 2 cot(7tx) > > for w E [O. 1]. 
1et27x -1 2 2 

Thus, for w E [0, 1] and x E (0, f , we have 

1 ?2, 
W - 

1- el2Xx - 1 

and hence 
|G(x, ,j) - GT(X, t1)1 ? 2IaT+I(X, 01)j, 

which completes the proof. El 

We remark that a sharper result is possible in which the constant in the bound 
is not 2, but is a smaller number which depends on x. 

From (3.1) and Theorem 3 we have 

IFN(X) - FNT(X)I < 4IaT+I(x, q(N))|. 
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This gives us an error expression involving the terms of the asymptotic expan- 
sion of G(x, j). Now we see from (2.8), (2.1 1), and (2.13) that 

IbT+1(x, j)I = IaT+1(X, 0)1, 

allowing us to write the above error expression as 

(3.2) IFN(X) - FN, T(X)I < 4IbT+l(X, I(N)) . 

Thus, for given N and e > 0, FN, T has an error of at most e provided a 
T exists for which 4IbT+1(x, j(N))j < e. However, looking at the expression 
for bT+I (x, j) given by (2.13) we see that the error may be quite large for x 
close to 0 (we know already that we cannot use the expansion for x = 0 ), 
so we see that such a T does not always exist. In this case, FN should be 
evaluated directly by using (2.2) rather than approximated by FN, T. We now 
give a result which indicates, for given N, how far away x should be from 0 
before we can obtain an accurate approximation to FN. We shall see that for 
large enough x it may be arranged so that one needs at most about 14 terms 
to get an approximation accurate to about 10-15. 

Theorem 4. Let e > 0 and N > 5 be given. Suppose FN(x) is approximated 
by FN, T(X) for y/N < x < 2, where T and y are positive integers satisfying 

2~ ~~N 

(3.3) 2<y< 

and 

(3.4) 4(T?+ 1)! 
( - 1)T+27rT+2 - 

Then 
IFN - FNTI< ? 

Proof. Since 

3 N 
<N2 for N > 5, 7r2 2 

the assumption (3.3) implies y/N < 2. Now for y/N < x < 2 

(3.5) 2lsin(7rx)I >2 sin ( >7) 2 _ -- > 2( N, 

provided 
y 3 7r 

6 VN N' 
which is equivalent to 

3 6N2 
Y<\ c2 5 

ensured by (3.3). 
From (3.2) and (2.13) we have 

I FN (X) - FN, T (X)I ? 4(T?+ 1)! 
(21 sin(lx)I)T+2j(j + 1) (.. ? T+ 1) 

N T+2 (T + 1)! 
- ( - 1)7l~r + ) ... l (I + T + 1) 
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where the last step follows from (3.5). Now we note from (2.4) that = iC(N) > 
N/2 and hence 

I I ~~~~~~< 
I(q +1) (q + T+ 1)- N N 1) .(NT 1 (N T2 

Thus, we obtain 

2y- 
1)7n 

T+2 
-Y 

- 
1)T+27rT+2 IFN(X)- EN, T(X)I ? 4 (2 ) N 1)! = 4( (T+2 1)!T < 6 

2 

using in the last step the assumption (3.4). n 

In practice, we may apply the theorem with a fixed value of y. For example, 
if we are content to restrict attention to N > 1 15, then we can satisfy (3.3) 
with y = 20. For this value of y one may easily verify that (3.4) is an equality 
if T = 13 and e = 8.0 x 10-16. We have found this set of parameters to be a 
convenient choice for practical calculations. 

Summarizing, to calculate R for an N-point lattice rule Q, we use R(Q) = 

QfN - 1 , where, as we see from (2.1), fN is just the product of 1-dimensional 
functions FN. For yIN < x < - we can approximate FN(x) by the function 
FN,T(X) given by (2.15), where the function HT(X, il) in (2.15) is given by 
(2.14). For 0< x < y/N the explicit formula (2.2) is used. For 4 <x < 1 we 
can use the symmetry property of FN: from (2.2) we have FN(X) = FN(l - x). 

Used in this way, the explicit formula (2.2), which has of order O(N) terms, 
needs to be used at most y times, since according to [17] each component of 
each abscissa of an N-point lattice rule is an integer multiple of 1/N. On the 
other hand, the approximation FN, T(X) needs to be used at most N/2 - y + 1 
times. Our operation count is based on the assumption that y and T are fixed; 
for example, as noted above, the values y = 20 and T = 13 give FN with 
an absolute accuracy of 8.0 x 10-16 for all N > 115. Under this assumption, 
the explicit and asymptotic calculations each require O(N) operations, and 
therefore so does the whole calculation. 

4. NUMERICAL RESULTS 

Here we use the method described in the previous section to calculate R 
for some lattice rules of the rank-1 form (1.3). The parameter y was taken 
to be 20. From the discussion at the end of the previous section, we know 
that for Y/N < X < ? and N > 115, FN,T(X) will have an error of at most 
6 = 8.0 x 10-16 if we take T = 13. However, it is not always necessary to take 
T as large as 13. From (3.2), we see that FN, T will have the desired accuracy 
if T is chosen to be the smallest integer for which 4IbT+1(x, I(N))l < E. This 
was the procedure adopted in these calculations. For N odd, we can calculate 
R for the rank-l rules (1.3) if we have the values of FN(x) or FN,T(X) at 
x = 0, 1/N, .. ., (N - 1 )/2N. To save computation time, for a given value of 
N these (N + 1)/2 values were calculated once and then stored. 
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TABLE 1 

N a R Bound on R Bound on P2 P2 

15019 12439 85295.22 106038.60 1.945(14) 1.196 
18101 17487 80549.19 99749.35 1.735(14) 1.052 
24041 1833 73509.11 90512.30 1.445(14) 0.693 
33139 7642 65879.01 80621.20 1.160(14) 0.497 
46213 37900 58420.63 71071.92 9.125(13) 0.328 
57091 35571 53949.35 65395.89 7.782(13) 0.249 
71053 31874 49554.02 59852.89 6.566(13) 0.210 
100063 39040 43167.71 51859.84 4.982(13) 0.141 

TABLE 2 

N Cpu Time A (seconds) Cpu Time B (seconds) 

15019 20.7 2594.4 
18101 24.7 3763.4 
24041 32.7 6630.5 

The values of R calculated here were for rank-I rules in s = 7 dimensions. 
The vectors z required in (1.3) were taken from Table 5 in Maisonneuve [12]. 
All these vectors are of the one-parameter Korobov form 

z(a) =(1,a, a2, ...,aS-l) (mod N), 1 <a< N. 

These given values of a were obtained by finding the value which minimized 
P2 . 

Niederreiter [13] has obtained upper bounds on R for rank-l rules. For 
composite N (all the values of N used were composite), these bounds are 
given by 

R < N(1.4 + 2logN)s. 

These bounds as well as the actual values of R are given in Table 1. These 
bounds on R exceed the actual values by only about 20%. Using (1.6) (with 
a = 2) we can also obtain bounds on P2. These bounds as well as the actual 
value of P2 are also given in Table 1. As can be seen, the bounds on P2 are 
quite poor, being more than 1014 times larger than the actual values. 

All the calculations were done on a Sequent 'Symmetry' computer. In Table 
2 (under the heading 'Cpu time A') we give the cpu time required to calculate 
each of the values of R given in the first three rows of Table 1. It can be seen 
that these times are of order O(N). For purposes of comparison, we also give 
in Table 2 (under the heading 'Cpu Time B') the cpu time required to calculate 
R by using (2.2) directly to evaluate FN(x) at x = 0, 1/N, ... , (N- 1)/2N 
(which are then stored). It can be seen that these times are of order O(N2), 
and also that they are clearly not competitive, even for these values of N. As 
a check, the values of R calculated in the latter way agreed with the values of 
R given in Table 1 to at least the 7 digits shown. 
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